Beyond SQL Injection

Network Attacks to Keep You Up at
Night

Kevin Feasel

Who Am I? What Am | Doing Here?

e Database Administrator]
— SQL Server DBA i 4
— SSIS developer

— Currently working for Aetna
e Standard employer disclaimer

— Catallaxy Services
e http://www.catallaxyservices.com

* Security Nut
* Cyclist
e QOccasional world traveler

http://www.catallaxyservices.com/

Protecting That Which Is Yours

 DBAs are data stewards: we protect the data
 How far should we go to protect it?
 What about the really important stuff?

Protecting The Data: The Basics

Logins have strong passwords
~ollow least privilege for accounts

Use roles and groups to create database
access control list (ACL)-like substances

Track login failures (and successes?)

Encrypt databases which require encryption
Encrypt and securely store backups

Protect against SQL injection in code

Moving Beyond The Basics

e Key assumption: your organization already
handles the basics fairly well

— If not, | know of a taxshelter consulting firm
which can help...

 More advanced attacks (from Derbycon 2012)
— Reversing SQL authentication passwords
— SQL Server man in the middle attack

Reversing SQL Authentication

 Credit: Nicolle Neulist

— http://www.rogueclown.net

* SQL authentication “encryption” is terrible

* Good encryption: assume your attacker has
perfect knowledge of everything but the key;
yvour algorithm should still not be reversable

http://www.rogueclown.net/

Reversing SQL Authentication

e SQL authentication:

— Expand each password byte to two bytes
— Swap the higher and lower 4 bits of each byte
— XOR each byte with A5

* There is no key; there is only a process!

Step 0: Select

Start with the character
ASCIl: p

Hex: Ox7/0

Binary: 01110000

A Character

o 7

P

Step 1: Expand to Two Bytes

* Append an empty byte to each byte in the
plaintext (in this case, “p”)

* Hex: Ox70 0x00
* Binary: 01110000 00000000

Step 2: Swap Higher and Lower Bits

Old Hex: 0x7 0x0

Old Bin: 0111 0000
Hex: Ox07/ Ox00
Binary: 0111 0000

Step 3: XOR with A5

XOR with A5 (1010 0101)

* Old Hex: Ox07 0x00

* Old Bin: 00000111 00000000
* XOR: 10100101 10100101
* Binary: 10100010 10100101
* Hex: OxA2 OxA5

Decrypting SQL Authentication

* Drop every even byte

— Alternatively, drop all OxA5 bytes—0x00 is never a
valid character in a password

* XOR each byte with OxA5
* Swap the higher and lower bits of each byte

Coding This Solution

e Ccode:
http://www.securiteam.com/tools/6Q00I0UEUM.html

* Python Code:
http://rogueclown.net/sqlbreak.py

e Powershell Code: DEMO

http://www.securiteam.com/tools/6Q00I0UEUM.html
http://www.securiteam.com/tools/6Q00I0UEUM.html
http://rogueclown.net/sqlbreak.py
http://rogueclown.net/sqlbreak.py
http://rogueclown.net/sqlbreak.py

Risk Factor And Mitigation Strategy

* Risk factor: Low
— This attack was released to the public by 2004

— Fixed with SQL Server 2005: SQL authentication
credentials sent encrypted using a self-signed certificate

* Mitigation Strategies:
— Switch to Windows Authentication
 Windows authentication using Kerberos is solid
— Limit SQL authentication account privileges
— Disable sa account
— Audit logins and correlate accounts to IP addresses
— Only accept traffic from known good IP addresses

Man In The Middle Attacks

* Credit: Laszlo Toth and Ferenc Spala

— http://soonerorlater.hu

e SQL Server passes data using Tabular Data
Stream (TDS)

e tdsproxy allows us to hijack a SQL Server
connection using a man in the middle attack
— http://soonerorlater.hu/download/tdsproxy v0.1.tar.gz

http://soonerorlater.hu/
http://soonerorlater.hu/
http://soonerorlater.hu/
http://soonerorlater.hu/download/tdsproxy_v0.1.tar.gz
http://soonerorlater.hu/download/tdsproxy_v0.1.tar.gz

What Is A Man In The Middle Attack?

* Normal connection:

Request to authenticate
Challenge
Response

Simplified authentication model

Request Data (e.g., SQL queries)
Receive data (TDS packets)

v

v

v

What Is A Man In The Middle Attack?

* Man In The Middle: attacker interposes its
device between victim and resource

What Can A MITM Do?

e Passive attack:

— Watch transmissions between victim and server
e Collect the same data the victim receives

— Collect credentials for later use

e Active attacks:

— Perform additional queries against the server
using the victim’s credentials

— Disconnect the victim (denial of service)

How To Perform A MITM Attack

* ARP cache poisoning

— Address Resolution Protocol (ARP): used to
connect OSI layer 3 (Network) to OSI layer 2 (Data
Link)

* |[n other words, link IP addresses to MAC addresses

— ARP cache: local table connecting IP addresses to
MAC addresses

* arp-a

How To Perform A MITM Attack

— ARP has no authentication and no verification
mechanism

* Many devices accept ARP replies before sending out
requests!

— Broadcast “here is the SQL Server” messages out
from the attacker’s MAC address and IP
combination

* ARP entries expire after a certain time, so even if a
victim has an entry, keep at it

e NOTE: must be done on a local network!

tdsproxy

e tdsproxy acts as a proxy server for SQL Server
Tabular Data Stream (TDS) traffic

— Remember: all SQL Server data transmits as TDS
packets

* The attacker can turn his tdsproxy-hosting
machine into a SQL Server repeater of sorts

— All traffic going to tdsproxy can be sent along to the
SQL Server instance

 Client versions need to be the same as what the
victim is using, however

Risk Factor And Mitigation Strategy

* Risk factor: medium
— Active and exploitable

— Not a trivial exercise, although much of the code is
in Metasploit

— Not a flaw within SQL Server itself!
* Mitigation strategies:
— arpwatch: monitor ARP traffic

— Have external clients connect via VPN
— Not much we can do from within SQL Server

Conclusions

e Bad news:

— Even with a fully secure SQL Server instance, there are
still ways in
* Example not shown: brute force attack against logins

— We need to talk to our network guys more

* Good news: SQL Server is a very secure product
— Fewer vulnerabilities than, e.g., Oracle

— Most published vulnerabilities are low-impact (SQL
authentication being broken) or external to SQL
Server as such (tdsproxy)

