
Beyond SQL Injection

Network Attacks to Keep You Up at
Night

Kevin Feasel

Who Am I? What Am I Doing Here?

• Database Administrator
– SQL Server DBA

– SSIS developer

– Currently working for Aetna
• Standard employer disclaimer

– Catallaxy Services
• http://www.catallaxyservices.com

• Security Nut

• Cyclist

• Occasional world traveler

http://www.catallaxyservices.com/

Protecting That Which Is Yours

• DBAs are data stewards: we protect the data

• How far should we go to protect it?

• What about the really important stuff?

Protecting The Data: The Basics

• Logins have strong passwords

• Follow least privilege for accounts

• Use roles and groups to create database
access control list (ACL)-like substances

• Track login failures (and successes?)

• Encrypt databases which require encryption

• Encrypt and securely store backups

• Protect against SQL injection in code

Moving Beyond The Basics

• Key assumption: your organization already
handles the basics fairly well

– If not, I know of a tax shelter consulting firm
which can help…

• More advanced attacks (from Derbycon 2012)

– Reversing SQL authentication passwords

– SQL Server man in the middle attack

Reversing SQL Authentication

• Credit: Nicolle Neulist

– http://www.rogueclown.net

• SQL authentication “encryption” is terrible

• Good encryption: assume your attacker has
perfect knowledge of everything but the key;
your algorithm should still not be reversable

http://www.rogueclown.net/

Reversing SQL Authentication

• SQL authentication:

– Expand each password byte to two bytes

– Swap the higher and lower 4 bits of each byte

– XOR each byte with A5

• There is no key; there is only a process!

Step 0: Select A Character

• Start with the character “p”

• ASCII: p

• Hex: 0x70

• Binary: 01110000

Step 1: Expand to Two Bytes

• Append an empty byte to each byte in the
plaintext (in this case, “p”)

• Hex: 0x70 0x00

• Binary: 01110000 00000000

Step 2: Swap Higher and Lower Bits

• Old Hex: 0x70 0x00

• Old Bin: 01110000 00000000

• Hex: 0x07 0x00

• Binary: 00000111 00000000

Step 3: XOR with A5

XOR with A5 (1010 0101)

• Old Hex: 0x07 0x00

• Old Bin: 00000111 00000000

• XOR: 10100101 10100101

• Binary: 10100010 10100101

• Hex: 0xA2 0xA5

Decrypting SQL Authentication

• Drop every even byte

– Alternatively, drop all 0xA5 bytes—0x00 is never a
valid character in a password

• XOR each byte with 0xA5

• Swap the higher and lower bits of each byte

Coding This Solution

• C code:
http://www.securiteam.com/tools/6Q00I0UEUM.html

• Python Code:
http://rogueclown.net/sqlbreak.py

• Powershell Code: DEMO

http://www.securiteam.com/tools/6Q00I0UEUM.html
http://www.securiteam.com/tools/6Q00I0UEUM.html
http://rogueclown.net/sqlbreak.py
http://rogueclown.net/sqlbreak.py
http://rogueclown.net/sqlbreak.py

Risk Factor And Mitigation Strategy

• Risk factor: Low
– This attack was released to the public by 2004

– Fixed with SQL Server 2005: SQL authentication
credentials sent encrypted using a self-signed certificate

• Mitigation Strategies:
– Switch to Windows Authentication

• Windows authentication using Kerberos is solid

– Limit SQL authentication account privileges

– Disable sa account

– Audit logins and correlate accounts to IP addresses

– Only accept traffic from known good IP addresses

Man In The Middle Attacks

• Credit: Laszlo Toth and Ferenc Spala

– http://soonerorlater.hu

• SQL Server passes data using Tabular Data
Stream (TDS)

• tdsproxy allows us to hijack a SQL Server
connection using a man in the middle attack
– http://soonerorlater.hu/download/tdsproxy_v0.1.tar.gz

http://soonerorlater.hu/
http://soonerorlater.hu/
http://soonerorlater.hu/
http://soonerorlater.hu/download/tdsproxy_v0.1.tar.gz
http://soonerorlater.hu/download/tdsproxy_v0.1.tar.gz

What Is A Man In The Middle Attack?

• Normal connection:

Request to authenticate

Challenge

Response

Simplified authentication model

Request Data (e.g., SQL queries)

Receive data (TDS packets)

What Is A Man In The Middle Attack?

• Man In The Middle: attacker interposes its
device between victim and resource

What Can A MITM Do?

• Passive attack:

– Watch transmissions between victim and server

• Collect the same data the victim receives

– Collect credentials for later use

• Active attacks:

– Perform additional queries against the server
using the victim’s credentials

– Disconnect the victim (denial of service)

How To Perform A MITM Attack

• ARP cache poisoning

– Address Resolution Protocol (ARP): used to
connect OSI layer 3 (Network) to OSI layer 2 (Data
Link)

• In other words, link IP addresses to MAC addresses

– ARP cache: local table connecting IP addresses to
MAC addresses

• arp -a

How To Perform A MITM Attack

– ARP has no authentication and no verification
mechanism

• Many devices accept ARP replies before sending out
requests!

– Broadcast “here is the SQL Server” messages out
from the attacker’s MAC address and IP
combination

• ARP entries expire after a certain time, so even if a
victim has an entry, keep at it

• NOTE: must be done on a local network!

tdsproxy

• tdsproxy acts as a proxy server for SQL Server
Tabular Data Stream (TDS) traffic
– Remember: all SQL Server data transmits as TDS

packets

• The attacker can turn his tdsproxy-hosting
machine into a SQL Server repeater of sorts
– All traffic going to tdsproxy can be sent along to the

SQL Server instance

• Client versions need to be the same as what the
victim is using, however

Risk Factor And Mitigation Strategy

• Risk factor: medium
– Active and exploitable

– Not a trivial exercise, although much of the code is
in Metasploit

– Not a flaw within SQL Server itself!

• Mitigation strategies:
– arpwatch: monitor ARP traffic

– Have external clients connect via VPN

– Not much we can do from within SQL Server

Conclusions

• Bad news:
– Even with a fully secure SQL Server instance, there are

still ways in
• Example not shown: brute force attack against logins

– We need to talk to our network guys more

• Good news: SQL Server is a very secure product
– Fewer vulnerabilities than, e.g., Oracle

– Most published vulnerabilities are low-impact (SQL
authentication being broken) or external to SQL
Server as such (tdsproxy)

